심방세동, AI 활용해 ‘피 한 방울’로 예측한다

입력 2025-06-09 11:05

  • 가장작게

  • 작게

  • 기본

  • 크게

  • 가장크게

연세의대, 혈액 속 단백질 통해 심방세동 예측 모델 개발

(연세의대)
(연세의대)

혈액을 분석해 심방세동을 예측하는 인공지능(AI) 모델이 등장했다.

연세대학교 의과대학은 정보영·김대훈·박한진 심장내과 교수, 양필성 의생명과학부 조교 연구팀이 혈액 속 단백질 정보를 기반으로 심방세동 발생 위험을 예측할 수 있는 AI 모델을 개발했다고 9일 밝혔다. 이번 연구결과는 국제학술지 써큘레이션(Circulation, IF 35.5)에 최근 게재됐다.

심방세동은 가장 흔한 심장 부정맥으로 뇌졸중과 심부전 위험을 높이는 주요 원인이다. 초기에는 증상이 뚜렷하지 않아 진단을 받지 못한 채 방치되기 쉽다. 질병이 발생하기 전에 위험도를 정확하게 예측하고 고위험군을 선별해 예방적 치료를 시행하는 정밀의료 전략이 필요하다.

연구팀은 약 6만3000명의 영국 바이오뱅크(UK biobank) 데이터를 대상으로 혈액 속 단백질과 심방세동 발생 여부와의 연관성을 분석했다. 이를 통해 심방세동 발생과 유의미한 상관관계를 보이는 단백질 후보군을 식별했다. 이후 미국의 ARIC 코호트 연구자들과 협력해 식별한 단백질 후보군이 동일하게 잘 작동함을 확인했다. 연구팀이 개발한 프로테오믹스 모델의 단백질 정보를 이용했을 때 기존 임상예측모델보다 뛰어난 정확도를 보였다.

특히 해당 단백질 정보는 심방세동이 실제 발생할 때까지의 시간을 예측하기도 했는데, 연구팀은 이를 단순 위험예측을 넘어 질병 진행 경과를 추정할 수 있는 기능으로도 평가했다.

일부 단백질은 심방세동뿐만 아니라 뇌졸중, 심부전 등 동반 질환의 발생과도 연관돼 심혈관계 질환 전반에 걸친 새로운 바이오마커로의 확장 가능성을 보였다.

정보영 교수는 “혈액 단백질 분석으로 심방세동 위험을 예측함으로써 향후 예방 중심의 심혈관 진료 패러다임에 중요한 전환점을 마련할 수 있을 것”이라고 설명했다.

김대훈, 박한진 교수는 “이번 연구는 다수의 유럽 및 아시아 인구집단을 기반으로 진행된 대규모 혈액 내 단백질 분석으로, 다양한 인종과 환경에서도 활용 가능한 예측 모델을 제시했다는 점에서 의미가 크다”라고 강조했다.

  • 좋아요0
  • 화나요0
  • 슬퍼요0
  • 추가취재 원해요0

주요 뉴스

  • 쯔양·닥터프렌즈·닥터딩요와 함께하는 국내 최초 계란 축제 '에그테크코리아 2025' 개최
  • 계주와 곗돈…계를 아시나요 [해시태그]
  • '오라클 쇼크' 강타…AI 거품론 재점화
  • 코스피, 하루 만에 4000선 붕괴…오라클 쇼크에 변동성 확대
  • 단독 아모제푸드, 연간 250만 찾는 ‘잠실야구장 F&B 운영권’ 또 따냈다
  • 서울 여의도역 신안산선 공사장서 7명 매몰⋯1명 심정지
  • 용산·성동·광진⋯서울 주요 지역 아파트 가격 상승세 여전
  • 순혈주의 깬 '외국인 수장'…정의선, 미래車 전환 승부수
  • 오늘의 상승종목

  • 12.18 장종료

실시간 암호화폐 시세

  • 종목
  • 현재가(원)
  • 변동률
    • 비트코인
    • 131,231,000
    • -1.49%
    • 이더리움
    • 4,397,000
    • -1.52%
    • 비트코인 캐시
    • 843,500
    • +0.48%
    • 리플
    • 2,840
    • -2.71%
    • 솔라나
    • 189,500
    • -2.97%
    • 에이다
    • 552
    • -5.8%
    • 트론
    • 418
    • -0.24%
    • 스텔라루멘
    • 320
    • -3.32%
    • 비트코인에스브이
    • 26,310
    • -4.26%
    • 체인링크
    • 18,690
    • -2.96%
    • 샌드박스
    • 175
    • -4.89%
* 24시간 변동률 기준